Evaluation: Concepts

Evaluation

- Assess how well a system/model works
 - Where it needs to be improved
 - How it compares to other systems
- Usually measure key quality criteria for texts produced system

Experimental evaluation

- We use experiments to measure quality criteria
- Experiments must be carefully designed, executed, and analysed
- Poor experiments tell us nothing

Discussion

- What evaluations have people done?
- What worked well?
- What went wrong?

Contents

- Types of evaluation
- Hypothesis testing
- Experimental design
- Replication
- Challenges in evaluating LLMs

Types of evaluation

- Human evaluation ask people to assess quality criteria
 - Or assess impact on task performance
- Automatic evaluation
 - Use metrics, algorithms, models to assess quality criteria
- Impact evaluation
 - Measure real-world impact on KPIs (key performance indicators)
- Discussed in detail in later talks
- Quick summary here

Human evaluation

- Rating/Ranking: Ask subjects to read texts and estimate quality
 - Other use Likert scale ("This text is accurate")
 - Can also ask subjects to rank several texts based on quality criteria
 - Each rating/ranking for one quality criteria
- Annotation: Ask subjects to mark up specific problems
 - Incorrect statements, difficult to understand phrases, etc
 - More objective, higher subject agreement, better guidance on what to fix
- Task-based: Ask subjects to do a task with the text
 - Most common is check and fix a draft text; how long does this take?
 - More meaningful, but depends on UI, subject, context

Automatic evaluation

- Reference-based: Measure similarity of generated text to high-quality "reference" text
 - Various algorithms, best use trained or fine-tuned models
- Referenceless: Directly measure a quality criteria
 - Best approach is to prompt an LLM (eg, GPT4) to do this

Impact evaluation

- Deploy a system in real-world, and assess impact on important KPI (key performance indicators)
 - Medical diagnosis: does accuracy increase?
 - Report writing: is this faster, fewer mistakes?
 - Behaviour change: how many people are convinced to stop smoking, drive more safely, etc
- Experiment must be ethical!

Contents

- Types of evaluation
- Hypothesis testing
- Experimental design
- Replication
- Challenges in evaluating LLMs

Hypothesis testing

- Scientific experiments test hypotheses
 - Smokers are more likely to get lung cancer
 - Nothing can travel faster than the speed of light
 - The moon is made of green cheese
- Different techniques are used
 - Measure lung cancer rates in smokers and non-smokers
 - Try to accelerate particles faster than light
 - Get astronauts to bring back samples of the moon

Hypothesis testing

- Can disprove (falsify) hypotheses
 - Moon is not made of green cheese
- Very hard to completely prove hypotheses, because of confounds
 - Maybe speed of light exceeded in weird context we have not checked
 - Maybe there is an unknown factor which both encourages smoking and causes cancer

NLG hypotheses

- Texts from System A are better than texts from System B under quality criteria C
 - Ehud's sportswriter produces more accurate stories than Jane's sportswrier
- Texts from System A achieve a value of at least V on criteria C
 - Average report will take less than one minute for a person to check and edit

Statistical hypothesis testing

- Use statistical tests to check whether a result is genuine or could just be noise.
- Typically compute the probability that the observed results could be seen if the hypothesis is false (p-value)
- Experiment only supports results if p-value < 0.05
 - Conventional threshold

Statistical tests

- Compare means (eg, A texts better than B texts on criteria C)
 - T-test (comparing two systems)
 - ANOVA (comparing more than two systems)
 - Many others, eg non-parametric
- Compare categories (eg, doctors seeing A texts are more likely to make the right diagnosis than doctors seeing B texts)
 - Chi-square
- Correlations (eg, longer texts have more mistakes)
 - Pearson correlation
 - Spearman correlation (my preference)
- Many others

Statistical testing

- Huge literature on this, will not discuss more here
- Most universities have classes on this
 - Try medicine or psychology if not in CS
- Important, do learn this!

Contents

- Types of evaluation
- Hypothesis testing
- Experimental design
- Replication
- Challenges in evaluating LLMs

Experimental design

- What hypothesis are we testing?
- What evaluation technique will we use?
- What material will be evaluated (test set_
- What humans subects will we use (for human eval)?
- What is the detailed experimental procedure?
- How will data be analysed?

Example: Sportswriter

- Hypothesis: Texts from Ehud's sportswriter have fewer errors than texts from Jane's sportswriter
- Technique: Human subjects annotate (mark up) errors
- Material: 100 texts from each system, produced from data from 100 randomly-selected basketball games
- Subjects: Students, who are paid minimum wage
- Procedure: Annotation process (see later lecture)
- Analysis: Paired t-test comparing per-text error counts

Experimental design and execution

- Evaluation experiment must be carefully designed
 - Sensible hypothesis
 - Appropriate evaluation type and technique
 - Representative test set which model has not seen
 - Subjects who take task seriously (for human evaluation)
 - Experiment is replicable
- Experiments must be carefully executed
 - Avoid code bugs, procedural errors
 - Correctly analyse and report data
 - Respond to questions from readers

Hypothesis mistakes: Measure wrong thing

- The experiment must measure important quality criteria!
- Hypothesis is what is important, not what is easy to measure

- Example: Measuring readability instead of accuracy in a medical application
 - Accuracy is much harder to measure (may need help from doctors)
 - But it is much more important than readability

Hypothesis mistake: Weak baseline

- Compare against state-of-art, not 5-year old system
- Better than old system is not good hypothesis

- Example: GPT3 paper compared against a 5-year old MT system
 - Not meaningful!

Eval technique mistake: outdated evaluation

- Do not use obsolete evaluation techniques such as BLEU or ROUGE
- Much better metrics exists

Even in 2024, I frequently see papers that use BLEU and ROUGE

ud Reiter 23

Material mistake: Unrepresentative test set

- The test set used in the evaluation must be real data which is representative of actual use
- I know getting good data is a pain, but it is important
- Example: Many medical AI/NLG systems use MIMIC, which is a dataset from ICU in one high-end US hospital.
 - NOT representative of hospitals in general (certainly not UK NHS)
 - NOT representative of other hospital units
 - So don't claim results on MIMIC are general!
- Many other examples of this

Material mistake: Data contamination

- The model being evaluated should not have been trained on the test data!
- Fundamental principle of machine learning
- Often violated with LLMs (discussed in later)
- One reason why LLMs evaluations don't translate into real-world effectiveness

Subject mistake: Subjects not representative

- Don't ask CS students to evaluate
 - clinical NLG system (get doctors to do this)
 - system aimed at general public (get broad range of subjects)
- Subjects should be representative of real users

Procedure mistake: Detect lazy subjects

- Many human evaluations use crowdworkers
- They may click randomly (or using ChatGPT to respond)
 - After all this maximises their income
- Need to check for this!

Ive seem many experiments with dubious data because of this

Analysis mistake: No stats

Compute statistical significance of results!!

Lots of NLP papers do not do this

Execution mistake: Code/reporting errors

- A lot of experiments use buggy code to run the experiment
 - Also bugs in analysis code
 - Distorts results
- Many papers show wrong results
 - Numbers in paper don't match experimental data
 - Sloppiness, not fraud
- Be careful when you execute an experiment!
- Discussed later

Replication mistake: Experiment not replicable

- Scientific experiments must be replicable by other researchers
 - Otherwise not science
- Discussed later
- Example: Experiment using GPT3 text-davinci3 model
 - Model decommissioned, no longer exists
 - So impossible to replicate experiments
 - But I still see papers in 2024 based on this model

Discussion

- Have you seen any of these mistakes
 - Measuring unimportant things
 - Weak baseline
 - Outdated evaluation technique
 - Unrepresentative test set
 - Data contamination
 - Unrepresentative subjects
 - Human subjects don't care
 - Code/analysis bugs
 - Experiment not replicable

Contents

- Types of evaluation
- Hypothesis testing
- Experimental design
- Replication
- Challenges in evaluating LLMs

Replication

- Science must be reproducible!
- If I do an experiment, you should be able to repeat the experiment and get similar results
 - Otherwise not science...

ReproHum project

- Explore reproducibility of NLP human eval
 - https://reprohum.github.io/
- 20 partner labs reproduce a selected set of NLP evaluations
 - Eval published in ACL or TACL papers
 - Each eval reproduced twice

Depressing Findings

- Most authors are reluctant to help in reproducing their papers
- All papers we have reproduced have flawed execution
- Some experiments could not be replicated

A Belz, et al (2023). Missing Information, Unresponsive Authors, Experimental Flaws: The Impossibility of Assessing the Reproducibility of Previous Human Evaluations in NLP. *Proc of The Fourth Workshop on Insights from Negative Results in NL*

C Thomson, E Reiter, A Belz (2024). Common Flaws in Running Human Evaluation Experiments in NLP. Computational Linguistics.

Problem 1: Authors

- In most cases, much easier to reproduce experiments if authors help
 - Provide details of data, exper design, UI, subject recruitment, statistical packages, etc
- Problem: Few authors will provide experimental details

Author Response

- When asked for experimental details
 - 61% of authors did not response
 - 26% responded to initial email but did not provide necessary details
 - Only 13% of authors responded and provided experimental details

Problem 2: Poor execution

- Results reported in paper do not match actual experimental data
- Code bugs distort experiments and analysis
- Outliers dropped ad-hoc
- Poor/confusing experimental UI
- Flawed anonymisation (ethics)

Code bug

[below is anonymised]

```
python prepareMTurkFiles.py
-gold data/gold.txt \
-baseline data/baseline.txt \
-sys1 data/sys1.txt \
-sys2 data/sys2.txt \
-sys3 data/sys2.txt \
-output_file outputs/mturk.csv
```

Code bug

[below is anonymised]

```
python prepareMTurkFiles.py
-gold data/gold.txt \
-baseline data/baseline.txt \
-sys1 data/sys1.txt \
-sys2 data/sys2.txt \
-sys3 data/sys2.txt \
-output_file outputs/mturk.csv
```

How common are code bugs?

- After high-qual commercial quality assurance, code has 1-2 errors/100 lines
- Most research/PhD code does not go through commercial quality assurance...
 - So more than 1-2 bugs/100 lines
- I suspect *big* problem in research code
 - Which no one talks about...
- We've seen other examples

Advice: Sanity-Check Results

- Check actual evaluation outputs (not just statistics and scores)
 - Look for bizarre patterns
 - Sys2 and sys3 have identical results
- Investigate if found
 - Either bug (embarrassing if published)
 - Or unexpected discovery!

Execution errors

- In ReproHum Phase 1, our partners reproduced experiments from 5 papers
 - All from ACL or TACL
- **Every** paper had execution flaws
- Not a good sign...

Problem 3: results could not be replicated

- One replicated experiment evaluated accuracy in a sportswriting domain by asking Turkers to count incorrect facts
 - Protocol proposed by Wiseman et al (2017)
 - Used by dozens (100s??) papers subsequently
- NOT replicable

Replication of old protocol

Paper	Note	mean errors
Pudupully and Lapata 2021	Original paper	0.07
Gonzalez-Corbelle et al (2023)	Replication 1	0.66
Watson and Gkatzia (2023)	Replication 2	1.525
Watson and Gkatzia (2023)	Replication 2 with academic evaluators	0.0625
Thomson et al (2023)	Better methodology	0.5

Mean number of errors in 4-sentence extract from corpus text

Protocol doesn't work

- Replications give very different results
 - Experiment cannot be trusted!
- Poor design
 - Task is complex and not well defined
 - Subjects not motivated, lack expertise
- Not a good evaluation protocol

https://ehudreiter.com/2023/10/31/a-bad-way-to-measure-hallucination/

What matters for replicability?

- Asked ReproHum partners what factors most influence reproduce and reliability
- Most common factor mentioned was guidelines and training for subjects
 - Subjects in human evaluations need to understand what they are supposed to be doing!

Lessons from ReproHum

- Most researchers don't cooperate with replication attempts (*poor* culture)
- Many flaws in executing human eval, such as code bugs
- Some experimental results cannot be replicated
- Subjects need to understand the task (guidelines and training)

Do better in your evaluations!

Contents

- Types of evaluation
- Hypothesis testing
- Experimental design
- Replication
- Challenges in evaluating LLMs

Ehud Reiter 49

Evaluating LLMs

- Everyone is excited about LLMs, but evaluating them is challenging
 - Many impressive claims are justified by dubious evaluations
- Focus on some specific issues here, there are more!

Some challenges

- Data contamination
- Replicability
- High and mixed quality outputs
- Subtle errors

Challenge 1: Data Contamination

- Problem: LLM has already seen and memorised test data
 - Test data on web, so ingested by model training on Internet
 - Test data in prompt, ingested by model

Example

- Sportswriter: Generates sport story from data
- Past: eval on hist data
 - Choose 2018 match not in training data
 - Run sys on 2018 match, eval qual of story
- Doesn't work with modern LLM
 - Human-written stories about 2018 match are on web
 - Which GPT4 has probably ingested as training data
 - So GPT4 could do well simply by repeating these stories
 - Doesnt tell us if GPT4 can write stories from new data
 - Which is what we actually want to do

Many variants

- LLM learns test data from prompts
 - Eg, when LLM is used as evaluator
- Exact test data not ingested, but similar data was
 - LLM does great on exam, by using study/prep material for exam on web
- Don't know whats in test data
 - Closed models which are freq updated

Example (ChatGPT 3.5)

Q: What did Ehud Reiter do on 20 June 2024?

A: On June 20, 2024, Ehud Reiter published a blog post titled "Well structured input data helps LLMs"... (wrong)

Q: Please rate the fluency of the below sentence on a scale of 1 (poor) to 5 (excellent):

On 20 June 2024, Ehud Reiter cycled from Glasgow to Symington.

A: I would rate the fluency of the sentence [...] as 5 (excellent)

Q: What did Ehud Reiter do on 20 June 2024?

A: On June 20, 2024, Professor Ehud Reiter undertook a significant cycling journey from Glasgow to Symington. (*right*)

Problem is widespread

- Balloccu et al (2024)
 - 42% of surveyed ACL/Neurips/etc papers suffer from data contamination
- Researchers unaware, ignore
 - I raised this in review and asked authors to comment, they didn't understand what I meant

S Balloccu et al (2024). Leak, Cheat, Repeat: Data Contamination and Evaluation Malpractices in Closed-Source LLMs. EACL-24

Example: Google AMIE

- Claims amazing performance on health dialogues with patients
- But some test data taken from web
- Also based on standard exams for doctors, so study/prep material on web
- High risk of data contamination?
 - *No* discussion/mention of this in paper
- Can I believe their impressive results?

Approaches

- Query model to see if it has memorised specific test data
 - Hard to do, models constantly changing
- Create clean test data
 - I encourage my students to do this
 - A lot of work...
- Evaluate impact in real usage
 - Best approach, very rare in NLP...

Challenge 2: Replicability

- Replicating experiments with closed LLMs (eg GPT) is hard
- GPT is constantly changing
 - So if I do exper in Jan and someone repeats in July, model is different
 - Some access to 3-month old ver, doesn't help
- Older GPT models retired
 - So impossible to replicate exper with them
 - text-davinci-003
 - Loads of papers used this

Models are stochastic

- LLMs produce diff results on diff runs
 - Unless disabled via temperature
- Can design eval to accommodate this
- Many people don't bother...

Approaches to replicating LLM evaluations

- Use open-source model, fixed checkpt
 - Download and run locally?
 - But then reviewers complain about using out-of-date models...
- Set temperature to zero
 - But could impact quality
- Tradeoff: Replicability vs Quality??
 - Researchers priorities quality

Challenge 3: High/mixed quality texts

- LLMs usually produce very good texts
 - Near-human (better-than-human) on some quality criteria?
- But produce garbage once in a while
- Challenge for classical NL evaluation

Eval high-quality texts

- Reference-based metrics compare NLG texts to human-written texts
 - NLG text gets better score if similar to ref text
 - Makes no sense if NLG text is better than the human reference text!
 - But people still use ROUGE, etc...

Eval high-quality texts

- Many human evaluations ask people to rate or rank texts
 - Subjects not do a good job when comparing very high quality texts
- Less of an issue for other types of human eval (annotation, task)

Eval mixed-quality texts

- LLMs produce awful texts once in while
 - Problem if need to guarantee quality criteria always meets minimum
 - Very common in safety-critical apps
 - Hard to predict when LLM do poorly
 - Hard to evaluate worse-case quality
- Domain shift is related issue
- Researchers focus on average quality, not worst-case quality
 - Even if worst-case quality is very important in user requirements!

Approaches

- Task/annotation human eval
- LLM-based evaluation??
 - Caution needed
- Monitor live production systems for unacceptable text

Challenge 4: LLMs make subtle errors

- LLM texts can be accurate but harmful.
 - Also may be accurate but not useful
- Need to understand this better!
 - Past: focused on readability, accuracy, content quality criteria
 - Define quality criteria for more subtle aspects

Accurate but not appropriate

(MedPaLM) Ear pain can be a sign of several underlying conditions, including: Middle ear infection (otitis media), which is commonly caused by a viral infection and can cause pain, redness, and swelling of the ear. External ear infection (otitis externa), which is commonly caused by a bacterial infection and can cause pain, redness, and swelling of the ear. Earwax impaction, which can cause pain, a feeling of fullness in the ear, and decreased hearing. Ear pain can also be a sign of a more serious condition, such as a brain tumor or a stroke....

Accurate but not appropriate

(MedPaLM) Ear pain can be a sign of several underlying conditions, including: Middle ear infection (otitis media), which is commonly caused by a viral infection and can cause pain, redness, and swelling of the ear. External ear infection (otitis externa), which is commonly caused by a bacterial infection and can cause pain, redness, and swelling of the ear. Earwax impaction, which can cause pain, a feeling of fullness in the ear, and decreased hearing. Ear pain can also be a sign of a more serious condition, such as a brain tumor or a stroke....

Accurate but not appropriate

 Doctor: I would never tell a patient that there is a risk of brain tumour or stroke, this would cause high levels of stress and anxiety. Instead I would tell them to see a doctor if problem persists or gets worse

Responses to diet struggles

- 1. Asked crowdworkers to provide dietary struggles
- 2. Prompted ChatGPT to respond to struggles (prompts developed with domain experts)
- 3. Asked experts to assess appropriateness/safety of response

Balloccu et al (2024). Ask the experts: sourcing high-quality datasets for nutritional counselling through Human-Al collaboration. Arxiv

Example

User: When I am stressed out, I am more likely to consume foods and drinks I know aren't good for me because eating it makes me feel better.

chatGPT: Starting from tomorrow you could make a conscious effort to make healthier choices when it comes to food and drinks.

Experts: Not helpful, could make person feel worse

True but unsafe

- 15% of responses not appropriate and/or not safe
- Rare to get factually wrong (hallucinated) responses.
- Problem was responses that were not helpful, made user feel worse, encouraged poor behaviour, etc

Not useful/lack of trust

- Mengxuan Sun using ChatGPT to explain complex medical notes (MDT) to patients
- A few mistakes (eg, spam URL)
- Bigger problem is that responses don't tell patients "what it means for them"
 - Explains terms, gives background, poor anal
 - Correct but not useful
- Patients also don't trust ChatGPT

M Sun et al (2024). Effectiveness of ChatGPT in explaining complex medical reports to patients. Arxiv

Need to define and measure new quality crit

- Makes user stressed (or other poor emotional reaction)
- Encourages poor behaviour
- Trust

Lots of Weak LLM Eval

- Distorted by data contamination
- Not replicable
- Ignores worst-case even if this is very important in use case
- Focuses on fluency and accuracy, ignores harm and utility

Discussion: LLM Evaluations

Have people seen LLM evaluations which they do not trust?

Ehud Reiter 77

Conclusion

- Quick pass through some general evaluation topics which I think are very important
 - Types of evaluation
 - Evaluation is hypothesis testing
 - Common problems in experimental design
 - Replication
 - Challenges in evaluating LLMs

Ehud Reiter 78