Automatic Evaluation

Automatic Evaluation

- Use an algorithm or model to evaluate a generated text
 - Sometimes generic
 - Sometimes based on quality criteria
- Sometimes called "metrics"
- Focus on basics here
 - New metrics constantly being introduced
- Huggingface good source for code
 - https://huggingface.co/docs/evaluate/en/index

Reference-based Evaluation

- Compare generated text to high-quality "reference" text
 - Example: edit distance between NLG text and reference text
- Similarity to reference text is used as a proxy for text quality
 - Older techniques are generic
 - Some newer techniques can be tuned for a specific quality criteria
- Need reference texts to do this!
 - Creating high-quality reference texts is expensive
 - Low-quality ref texts (crowdworkers, internet) not useful in assessing high-quality LLM output

Referenceless Evaluation

- Evaluate quality criteria without a reference text
 - Flesch-Kincaid grade level sort of assesses reasability
- In 2024 usually done with an LLM
- Readability and other "linguistic" quality criteria
 - Just need output text (source-free)
- Other criteria (accuracy, content, etc)
 - Provide input data to the metric

Contents

- Example techniques
- Validation
- Experimental design and what goes wrong

Simplest metric: Edit distance

- Reference-based metric
- How many words (characters) need to be changed in the generated text in order to match the reference text?

- Transparent: Can understand why text scored badly
 - Much harder with trained or LLM metric

Example: Weather

Reference text:

SSW 16-20 GRADUALLY BACKING SSE THEN BECOMING VARIABLE 10 OR LESS BY MIDNIGHT *Generated text:*

SSW'LY 16-20 GRADUALLY BACKING SSE'LY THEN DECREASING VARIABLE 4-8 BY LATE EVENING Differences:

SSW'LY 16-20 GRADUALLY BACKING SSE'LY THEN DECREASING *BECOMING* VARIABLE 4-8 10 OR LESS BY LATE EVENING-MIDNIGHT.

Edit count:

- Two deletions of 'LY (one token deleted, twice)
- DECREASING changed to BECOMING (one token changed)
- 4-8 changed to 10 OR LESS (three tokens changed)
- LATE EVENING changed to MIDNIGHT (two tokens changed)
- No tokens added

Token-level edit distance is 8 tokens deleted, changed, or modified Character-level (Levenshtein) edit distance is 27

Many variations

- Word or character edit-distance
- Measure similarity at ngram level
 - Word level: BLEU, ROUGE
 - Character level: chrF
- Many enhancements proposed

- Character level seems better?
 - Studies show chrF better than BLEU/ROUGE
 - My student found character edit-distance very effective

Trained metric: BLEURT

- Train a model to predict the quality of a text
- BLEURT
 - Reference-based metric
 - Fine-tuned BERT to predict quality score
 - Heavy use of synthetic data to supplement genuine training data (human ratings of generated texts)
- Can be used "off the shelf", or further fine-tuned to a domain and/or quality criteria
- Mostly (not always) better than edit-distance metrics

Other trained metrics

- Many trained metrics proposed
- COMET is one of the best trained metrics for evaluating MT
 - No explicit quality criteria, optimized for MT quality
 - Referenceless as well as reference-based versions
- BERTScore is older, probably less effective, still used

LLM Evaluator (LLM as Judge)

- Currently there is a lot of interest in using LLMs to evaluate texts
 - Ie, just ask GPT4 how good a text is, either in general or for a quality criteria
- LLMs should not be used to evaluate their own output
 - GPT4 is biased and "likes" its own output texts
- Otherwise seems to work well, but limitations still being explored

Example: GEMBA-MQM prompt

(System) You are an annotator for the quality of machine translation. Your task is to identify errors and assess the quality of the translation.

```
(user) {source_language} source:\n
""{source_segment}""\n
{target_language} translation:\n
""{target_segment}""\n
\n
```

Based on the source segment and machine translation surrounded with triple backticks, identify error types in the translation and classify them. The categories of errors are: accuracy (addition, mistranslation, omission, untranslated text), fluency (character encoding, grammar, inconsistency, punctuation, register, spelling),

[etc]

Contents

- Example techniques
- Validation
- Experimental design and what goes wrong

Validation

- How well do metric results agree with real quality criteria?
- Accuracy: does metric agree with actual error counts?
 - Real measure: number of errors (perhaps weighted by severity)
 - If text 1 gets metric score of 0.8 and text 2 gets a metric score of 0.4, does text 2 actually have twice as many errors as text 1?
- Utility: does metric predict actual utility of texts
 - Real measure: time required by a person to post-edit a text
 - If text 1 gets metric score of 0.8 and text 2 gets a metric score of 0.4, will it take a human twice as long to post-edit text 2 compared to text 1?

• Etc

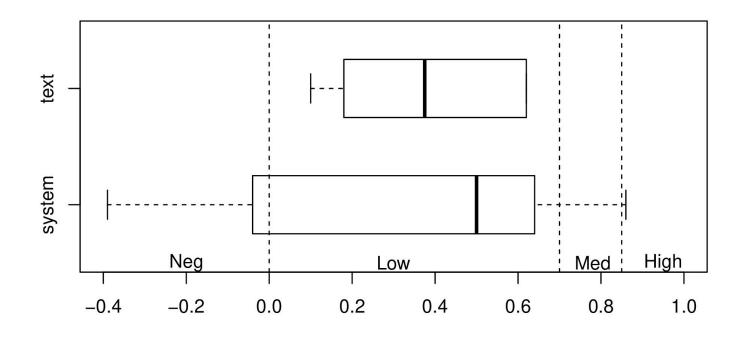
Validation

- Validation is process of measuring how well a metric agrees with actual measurements of quality criteria
 - Or perhaps with high-quality human assessments of criteria
- Usually done experimentally

Validation experiments

- Get N generated texts
 - Representative, good coverage
- Carefully measure actual criteria on these texts
 - Must be done well for experiment to be valid!
- Run metric on these texts
- Measure correlation between metric and actual measurement
 - Want to see correlation coefficient of at least 0.85
 - Usually a lot lower...

Correlations of BLEU to human evals in NLG



- Plot of reported correlations and BLEU and human evaluations in NLG, in papers published in ACL Anthology up to 2017
- https://doi.org/10.1162/coli_a_00322

Correlations with post-edit time

Criterion:	Post-edit times				
Reference:	human	edited	eval	avg	max
ROUGE-1-F1*	0.334	0.627	0.160	0.443	0.550
ROUGE-2-F1*	0.384	0.653	0.166	0.551	0.570
ROUGE-3-F1*	0.366	0.645	0.117	0.576	0.565
ROUGE-4-F1°	0.342	0.632	0.076	0.575	0.557
ROUGE-L-Pr*	0.348	0.471	0.169	0.366	0.427
ROUGE-L-Re*	0.409	0.614	0.300	0.520	0.551
ROUGE-L-F1°	0.384	0.646	0.285	0.538	0.564
CHRF*	0.341	0.460	-0.075	0.463	0.438
METEOR*	0.415	0.667	0.203	0.529	0.581
BLEU*	0.382	0.642	0.098	0.557	0.565
Levenshtein dist.	0.547	0.780	0.453	0.600	0.654
WER	0.239	0.629	0.059	0.326	0.550
MER	0.392	0.635	0.156	0.565	0.557
WIL	0.394	0.649	0.117	0.590	0.566
ROUGE-WE*	0.402	0.624	0.165	0.496	0.549
SkipThoughts*	0.298	0.403	-0.067	0.229	0.375
Embedding Avg*	0.266	0.375	-0.209	0.064	0.412
VectorExtrema*	0.409	0.553	0.127	0.424	0.500
GreedyMatching*	0.308	0.577	-0.041	0.295	0.520
USE*	0.339	0.522	0.201	0.366	0.476
WMD	0.354	0.594	0.154	0.421	0.529
BertScore*	0.497	0.688	0.340	0.571	0.590
MoverScore*	0.360	0.640	0.246	0.570	0.559
Stanza+Snomed*	0.334	0.508	0.118	0.354	0.460

Character edit distance (Levenshtein) has best correlation with human eval!

1960s tech beats 2020s tech...

Correlations between metric scores and time required by a human expert to postedit a generated text https://aclanthology.org/2022.acllong.394/

Weak correlations

- Many other papers have reported that even the "best" metrics are poor predictors of quality, especially when
 - Evaluating accuracy or utility (metrics do better at readability)
 - Texts are long and complicated (metrics do better with simple texts)
 - Evaluating quality of a single text (metrics do better at assessing the average quality of texts produced by a system)

Caveat

- Also get worse correlation when the "ground truth" quality assessments are sloppy, poorly done, noisy
- These need to be done well!

Metrics must be valid

- Only use metrics when correlate well with "ground truth" assess
 - Don't use unvalidated (or poorly validated) metrics!
- Note correlation depends on context!
 - Which quality criteria (readability vs utility)
 - Genre (sports story vs medical report)
 - Text quality (terrible vs near-human)
- Some metrics are well validated, others are not
 - Check the validation evidence, esp for unusual metrics!

Advice

- When using metrics, I personally try to also do a good human evaluation, even if on a small scale
- If human eval agrees with metrics, I have more confidence in metrics
- If human eval disagrees with metrics, I try to find out why

Contents

- Example techniques
- Validation
- Experimental design and what goes wrong

Experimental design for automatic eval

- Research question: Which quality criteria are we trying to estimate, which baseline are we comparing to
 - Depends on use case, research goals
- Metric: Which metric(s) will we use
 - Depends on validation evidence and practicalities
- Material: Which texts will we assess
 - Representative, good coverage
 - Unseen (avoid data contamination)

Experimental design

- Experimental procedure: Details of metrics
 - Implementation, parameters, fine tuning (needed for replication)
 - Supplementary human evaluation?
- Analysis: How do we analyse the data
 - Statistics can use t-test, sometimes different tests recommended
 - See best practice for specific metrics
 - Qualitative error analysis Good practice to qualitatively analyse texts with poor scores (are they bad, or did metric make mistake)
 - Correlation with human eval (if done)

What goes wrong

- See previous lecture
- Use metric which is not valid for key quality criteria
 - If it doesn't measure what we care about, its not useful!
 - If we care about accuracy, don't use readability metric...
 - Unfortunately I see a lot of this
- (Worse) use metric that is not validated
 - "I am convinced GPT4 does a great job on eval, so we use it"
 - Need evidence, not "gut feeling"
 - Especially when danger of conflict-of-interest
 - Above said by someone from OpenAl

What goes wrong

- Use synthetic test data
 - "We didn't have much real test data, so we asked GPT4 to create more"
 - Very dangerous, don't do this unless really know what you are doing
 - Training on synthetic data can be OK, testing on it is dubious
- Low quality reference texts and/or test data
 - Reference texts (if used) must be high-quality!
 - Test data must be accurate!
 - Quality check for errors, noise, etc
 - Big problem in many current test sets
 - "Academics terrible at creating test data because they ignore quality"??

What goes wrong

- Repeatedly rerun experiment until get desired result
 - Different random seeds
 - Tweak parameters on NLG system
 - Doing this invalidates results!
 - Test data should ideally only be used once
- Calculate dozens of metrics, just report "best" ones
 - Invalidates results
 - Best to just use a few metrics
 - Essential to report every result

Conclusion

- Automatic (metric) evaluation is very popular in NLG
- However results can be meaningless
 - Not good predictors of actual quality/utility
- Only use well-validated metrics
- Careful experimental design and reporting essential

Proper evaluation requires meaningful numbers!

Discussion: Experience with metrics?