building NLG systems

Challenges are Same for Neural and Rule NLG

The fundamental challenges of building useful data-to-text NLG systems are the same regardless of whether we build systems with rules or transformers. We need to understand where NLG is useful, choose good content to communicate, robustly deal with edge cases, allow users to configure and control the system, and evaluate properly. I’d like to see more research on these fundamental issues, regardless of technology used.